Evaluation of the shared genetic component between giant cell arteritis and biomarkers of biological aging

Laura Martínez-Gutiérrez¹, Inmaculada Rodríguez-Martín¹, Martin Kerick¹, Gonzalo Borrego-Yaniz¹, Javier Martín¹, Lourdes Ortiz-Fernández¹, Ana Márquez¹

1. Institute of Parasitology and Biomedicine López-Neyra, CSIC, 18016 Granada, Spain

Introduction	Hypothesis	Materials & methods
 Giant cell arteritis (GCA) Immune-mediated inflammatory disease which affects blood vessels Complex etiology: interplay between genetic and environmental factors Biomarkers of biological aging 	Considering that advanced age represents a key factor for the development of GCA, we hypothesize that genetic factors influencing aging could also play a role in the	GWAS GCA GWAS LTL n = 19,048 GWAS LTL cases = 3,495 n = 472,174 controls = 15,550 m = 472,174

(EAA) are two markers of biological aging with a **complex etiology**

development of this vasculitis

Objective

Explore the role of aging in GCA by analysing the shared genetic component between GCA and both markers of biological aging through a cross-trait meta-analysis

inbln

Schematic overview of the experimental design of the study

Results & discussion

22 independent genetic variants were shared by GCA and at least one marker of aging, with 17 variants common to all three, indicating a **significant genetic overlap between GCA and the aging process**

Table 1. Results of the cross-trait meta-analysisand gene priorizitation

Most of these variants act as eQTLs, regulating gene expression levels

 Table 2. Functional annotation of shared genetic variants

Venn diagram illustrating the number of shared signals between GCA, LTL and/or EAA

	Kegion	Best subset meta	Best p-value meta	Prioritized gene	Open Targets	
1p	13.2	GCA TEL EAA	3,97E-14	PTPI	V22	
2	o14	TEL EAA GCA	1,29E-08	SPR	EIB ED2	
3q2	25.33	EAA GCA TEL	4,23E-16	SM	C4	
4p	16.3	GCA TEL EAA	1,78E-14	POLN C4orf48		
40	q24	GCA EAA	7,03E-10	NFKB1 MANBA		
5p1	.5.33	TEL EAA GCA	1,81E-30	CLPTM1L TERT		
5q	31.1	EAA GCA TEL	5,39E-09	JADE2		
5q	31.1	GCA EAA TEL	2,47E-09	MACROH2A1 TIFAB		
60	q21	GCA TEL EAA	1,26E-10	CD164		
60	q26	GCA EAA	2,43E-08	PL	G	
7 q	32.1	TEL EAA GCA	1,16E-09	IRI	-5	
8q	12.1	TEL EAA GCA	4,41E-09	СНС	HD7	
11c	12.1	GCA EAA	1,20E-08 SLC43A PRG2		3A3 G2	
12q	13.13	GCA EAA TEL	1,08E-08 GPR8		84 E2	
12q	24.12	GCA TEL EAA	3,92E-17	SH2	B3	
16p	013.3	GCA EAA TEL	9,98E-09 TRAP:		4 <i>P1</i>	
160	12.1	TEL GCA EAA	2,68E-11	1 HEATR3		
160	23.1	GCA TEL	TEL 2,82E-14 GLG		G1	
17p	013.3	GCA TEL EAA	4,03E-09	SR	SRR	
18p	11.32	GCA TEL EAA	4,61E-10	ENO	SF1	
180	12.3	GCA TEL EAA	3,41E-17	SETE	BP1	
180	21.2	GCA TEL	2,71E-17	POLI		

Genetic variants were prioritized to genes involved in **relevant pathways**

Immune response	
PTPN22	
NFKB1	
IRF5	

Clonal hematopoiesis					
SETBP1					
SH2B3					
SPRED2					

Telomere manteinance					
DCLRE1B					
TERT					

Angiogenesis

	Blood eQTL	Immune cell eQTL	Vascular eQTL	Other tissue eQTL	pQTL	sQTL	CI	
1p13.2_PTPN22								
1p13.2_DCLRE1B								
2p14_SPRED2								
3q25.33_SMC4								
4p16.3_POLN								
4p16.3_C4orf48								
4q24_NFKB1								
4q24_MANBA								
5p15.33_CLPTM1L								
5p15.33_TERT								
5q31.1_JADE2								
5q31.1_MACROH2A1								
5q31.1_TIFAB								
6q21_CD164								
6q26_PLG								
7q32.1_IRF5								
8q12.1_CHCHD7								
11q12.1_SLC43A3								
11q12.1_PRG2								
12q13.13_GPR84								
12q13.13_NFE2								
12q24.12_SH2B3								
16p13.3_TRAP1								
16q12.1_HEATR3								
16q23.1_GLG1								
					-		- 1	4

"|*" separating traits in opposite directions*

Funcional annotation data obtained from OpenTargets. **eQTL**, *expression quantitative trait loci;* **pQTL**, protein quantitative trait loci; **sQTLs**, splicing quantitative trait loci; **CI**, chromatin interactions.

Conclusions

This is the first study identifying a common genetic component between GCA and markers of biological aging. Our finding represents a breakthrough in the understanding of the role of aging in the pathogenesis of this vasculitis.

Funding		References
MINISTERIO DE CIENCIA, INNOVACIÓN UNIVERSIDADES AGENCIA ESTATAL DE INVESTIGACIÓN RECONSTRUCTOR (RD21/000)	BECAS DE INTRODUCCIÓN A LA INVESTIGACIÓN	 Borrego-Yaniz, G. et al. <i>The Lancet. Rheumatology</i>, <i>6</i>, e374–e383 (2024) Codd, V. et al. <i>Nature genetics</i>, <i>53</i>, 1425–1433 (2021) McCartney, DL. et al. <i>Genome biology</i>, <i>22</i>, 194 (2021) Weyand CM & Goronzy JJ. <i>Circulation research</i>, 132, 238–250 (2023)